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Abstract 

We develop a simulation algorithm for estimating the prices of American-style securities, 
i.e., securities with opportunities for early exercise. Our algorithm provides both point 
estimates and error bounds for the true security price. It generates two estimates, one biased 
high and one biased low, both asymptotically unbiased and converging to the true price. 
Combining the two estimators yields a confidence interval for the true price. The proposed 
algorithm is especially attractive (compared with lattice and finite-difference methods) 
when there are multiple state variables and a small number of exercise opportunities. 
Preliminary computational evidence is given. 
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Multiple state variables; Real options 
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1. Introduction 

There are an increasing number of important security pricing models where 

analytical solutions are not available. In this paper we propose a general algo- 
rithm, based on Monte Carlo simulation, for the estimation of security prices. 
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The algorithm can be applied to models with multiple state variables, with possi- 

ble path dependencies in the state variables, and is specially designed to handle 
American-style securities, i.e., securities with opportunities for early exercise. I 

Despite its widespread significance, the valuation of early-exercise features re- 
mains a difficult problem in many important settings, particularly for multifactor 

models. Important pricing problems frequently arise in the theory of economic in- 
vestment, see, e.g., Dixit and Pindyck (1994). Examples include the development 
of natural resources (Brennan and Schwartz, 1985), land-use decisions (Geltner 
et al., 1995), the adoption of technological innovation (Grenadier and Weiss, 

1994), manufacturing flexibility (Triantis and Hodder, 1990), and, more funda- 
mentally, the option to initiate or abandon a project (Majd and Pindyck, 1987; 
McDonald and Siegal, 1986; Pindyck, 1988). In many of these applications, ana- 
lytical results are unavailable, even for relatively simple models. Indeed, there is 

no analytical solution for the price of an American option on a single dividend- 
paying asset in the standard Black-Scholes framework. 

Binomial, lattice, and finite-difference methods can be used to generate nu- 
merical solutions to pricing problems with one or two sources of uncertainty. 
However, realistic models of many securities require three or more state vari- 
ables. Geltner et al. ( 1995) successfully study the value of vacant land as a call 
option on the maximum of two possible land uses; but they also note that in 
practice there may be multiple uses - single-family houses, apartment buildings, 
commercial or industrial uses, for example. The general model of Triantis and 
Hodder (1990) considers a factory making an arbitrary number of distinct prod- 

ucts; understandably, their method leads to numerical results only in the case 
of two products. Other examples include quality options (e.g., multiple deliver- 
able assets in Treasury futures contracts) and other options on multiple assets 
(e.g., options on the maximum of two or more asset prices and options on the 
difference between two asset prices). Also, realistic models of foreign currency 
options, swaptions, and differential swaps include stochastic exchange rates and 
stochastic domestic and foreign term structures; see Amin and Jarrow ( 1991) 
and Tumbull (1993) for examples. Cortazar and Schwartz (1994) use multifactor 
models to price commodity contingent claims. Models with stochastic volatil- 
ity, interest rates, default risk, convenience yields, and asset prices are becoming 
increasingly common. Assets with path-dependent payoffs (e.g., American Asian 
options) also give rise to multi-state models, because path dependence can usually 
be eliminated through the inclusion of additional state variables. For models with 

r A European-sryle security is one in which the owner cannot influence the cashflows of the security. 

This definition includes standard European options as well as, e.g., barrier options with automatic 

exercise when a barrier is hit. The holder of an American-style security can make decisions which 

affect its cashflows. This definition includes standard American options which allow for continuous 

exercise, Bermudan options which allow exercise at a finite number of dates, shout options (which 

allow the owner to lock-in the current intrinsic value of the option), and other securities. 
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multiple state variables there are few, if any, analytical results for American-style 

securities and many instances where formulas for European-style securities are 
not available. In these cases, numerical methods are the only means for obtaining 
pricing and hedging results. 

Given the importance of valuing early-exercise features in problems with mul- 

tiple state variables, the dearth of studies that address these problems must be ex- 

plained, in part, by a need for effective valuation procedures. This paper addresses 
that need by presenting a general method, based on Monte Carlo simulation, for 
the valuation of assets with early-exercise features. Because the method uses ran- 
dom sampling, rather than the enumeration implicit in lattice and finite-difference 
methods, it can be applied easily to models with multiple state variables and 
possible path dependencies. 

Most pricing problems in the literature for which closed-form solutions are 

not available are solved numerically by lattice or finite-difference methods. The 
binomial lattice method proposed by Cox et al. (1979) has been very successful 
for pricing claims contingent on a single state variable which follows a geometric 
Brownian motion process. Their method has been extended in many directions. 

Nelson and Ramaswamy (1990) developed binomial methods for more general 
diffusion processes. Hull and White (1993a) present trinomial methods for valuing 
interest rate-sensitive securities. Boyle et al. (1989) give a multinomial method 
for valuing claims on several assets whose prices follow a multivariate geometric 
Brownian motion process. Trigeorgis ( 199 1) proposes a log-transformed binomial 
method and applies it to the pricing of real options. Zenios and Shtilman (1993) 
provide a procedure for sampling paths from a lattice to provide a prespeci- 
fied level of accuracy.’ Although lattice methods have many desirable features, 
their computational cost grows exponentially with the number of state variables. 
Rigorous proofs of convergence are often difficult for lattice methods. Conver- 
gence of the Cox et al. (1979) binomial method for the case of American options 
was only recently proved in Amin and Khanna (1994). 

Simulation methods for asset pricing were introduced to finance in Boyle 
(1977). Since that time simulation has been successfully applied to a wide range 
of pricing problems. For an overview of recent developments in the use of sim- 
ulation for security pricing, see Boyle et al. (1997). Simulation is an attractive 
method for asset pricing because of the generality in the types of assets it can 
handle and the ease with which it handles multiple state variables, and path 
dependencies. Its two major drawbacks are speed of computation and apparent 
inability to deal with the free-boundary aspect of American options. Regarding 
the speed of computation, note that the convergence rate of Monte Carlo methods 

is typically independent of the number of state variables, whereas the convergence 

2 Other extensions of the binomial approach include jump processes in Cox and Ross (1976) and 

trinomial and multinomial processes in Boyle (1988), Amin (1991), and Kamrad and Ritchken (1991). 
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rate of lattice methods is exponential in the number of state variables. Hence, 

simulation methods should be increasingly attractive compared to lattice methods 
as the number of state variables grows. 

The major difficulty in valuing early-exercise features is the need to estimate 
optimal exercise policies as well. Standard simulation procedures are ‘forward’ 
algorithms, i.e., paths of state variables are simulated forward in time. Given 

a state trajectory and a pre-specified exercise policy, a path price is determined. 
An average over independent samples of path prices gives an unbiased estimate 
of the security price. By contrast, pricing procedures for assets with early-exercise 

features are generally ‘backward’ algorithms. That is, the optimal exercise strat- 
egy at the maturity of the contract is easily determined. Proceeding backwards 
in time, the optimal exercise strategy and corresponding price are determined via 

dynamic programming. The problem of using simulation to price American op- 
tions stems from the difficulty of applying an inherently forward-based procedure 

to a problem that requires a backward procedure to solve. 
The first serious attempt to apply simulation to the pricing of American options 

is Tilley (1993).3 In a single state variable setting, Tilley proposes a ‘bundling’ 
algorithm for security pricing. At each time period, simulated paths are ordered 
by asset price and bundled into groups. An optimal exercise decision is estimated 
for each group. Tilley’s algorithm has at least three main difficulties. First, no 
proof of convergence is provided. Indeed, he provides evidence that if his algo- 

rithm converges, it does not converge to the correct value. Second, his algorithm 
requires that all simulated paths must be stored at one time. This is necessitated 
by the sorting and bundling required at each time period. The storage requirement 
poses a significant computational problem when the number of simulated paths 
is large. Third, there is no stated or obvious way to generalize the algorithm to 
additional state variables. 4 Analysis and extensions of Tilley’s method are given 
in Carriere (1996). More recently, Bararaquand and Martineau (1995) propose 
a stratification method for pricing high-dimensional American securities. Further 
discussion of the methods of Tilley and Barraquand and Martineau is given in 

Boyle et al. (1997). 
In this paper we argue that there can be no general method for producing 

unbiased simulation estimator of American option values. We circumvent this 

3 Dammon and Spatt (1992) use Monte Carlo simulation to value dividend reinvestment and voluntary 

purchase plans which involve optimal exercise decisions. However, their algorithm is fairly specific to 

these contracts. They observed the potential for bias when applying Monte Carlo techniques to valuing 

contracts with optimal exercise provisions (see Dammon and Spatt, 1992, p. 340, footnote 13). 

4 Specifically, it is not clear how to define bundles when there are multiple state variables. No matter 

how the bundling procedure is defined, it is likely that most bundles will contain very few paths. 

Hence, the bias problem is likely to be severe and increase with the number of state variables. In 

the single state variable case, Tilley suggests a refined procedure for determining a ‘sharp’ boundary. 

This refined procedure does not generalize to multiple state variables. 
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difficulty by generating tu~o estimates of the asset price based on random samples 

of future state trajectories and increasingly refined approximations to optimal ex- 

ercise decisions. One estimate is biased high and one is biased low; both estimates 

are asymptotically unbiased and converge to the true price. We combine the two 
estimates to give a valid, conservative confidence interval for the asset price. The 
method has minimal storage requirements and applies directly to problems with 
multiple state variables. In its simplest form, the method is limited to pricing se- 
curities with a finite number of exercise opportunities. Indeed, the computational 
requirements of the method grow exponentially in the number of exercise op- 
portunities. Through extrapolation we may, however, extend the method (at least 

approximately) to continuous exercise or an arbitrary, finite number of exercise 
opportunities. 

The paper is organized as follows. Simulation estimators are motivated and 
described in the next section. Theoretical analysis of the estimators is given in 

Section 3. Numerical results are given in Section 4. Concluding remarks, possible 
extensions, and areas for future research are given in Section 5. Appendix A 

contains proofs and Appendix B shows that, under reasonable restrictions, there 
can be no unbiased estimate of American option prices. Appendix C provides 
detailed information on the implementation of the algorithm. 

2. Overview of the method 

We begin our discussion by focusing on a standard call option on a single 
underlying asset which pays dividends at a continuous rate. The typical simu- 
lation approach to European option pricing is to use simulation to estimate the 
expectation 

C = E[e-‘r(Sr - K)+] 

under the risk-neutral measure. As usual, r denotes the riskless rate of interest, 
T the option maturity, K the strike price, and Sr the terminal stock price. The 
American option pricing problem is to find 

C = m;x E[e-“(S, - K)+] (1) 

over all stopping times z 5 T. Throughout the paper, we focus on a discrete time 
approximation to this problem where we restrict the exercise opportunities to lie 
in the finite set of times 0 = to < ti < . . < td = T. The analogous procedure for an 
American option would be to simulate a path of asset prices, say, &,Si,. . . ,ST, 
at corresponding times 0 = to < tt < . . <td = T; then compute a discounted op- 
tion value corresponding to this path, and finally average the results over many 
simulated paths. The main question is how to compute a discounted option value 
corresponding to the asset price path. 
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Fig. 1. Sample simulated path. 

If the optimal stopping policy were known, the path estimate would be emrr 
(S, - K)+. But the optimal stopping policy is not known and must also be 
determined via the simulation. A natural idea is to compute the optimal stopping 
time for the simulated path. This gives the path estimate 

max e-“‘(S, -K)+. 
i=o, . ..( d 

However, this path estimate corresponds to the perfect foresight solution and 
hence it tends to overestimate the option value. Indeed, the overestimate follows 
from the inequality maxi=c,...,d e+ (S, - K)+ 2 emr+(S, - K)+. An illustration 
of this phenomenon is given in Fig. 1. Following the optimal but unknown ex- 
ercise strategy, the option would be exercised at maturity since the path never 
entered the optimal exercise region. However, the perfect foresight strategy would 
achieve a higher path value by exercising at time t3. The expected value of these 
path prices is not equal to the American option price given by (1) and so this 
procedure does not solve the pricing problem. Increasing the simulation effort by 
simulating many paths does not remove the bias problem. 

The previous discussion illustrates the difficulties involved in applying standard 
simulation methodology to an American option pricing problem. Indeed, it seems 
unlikely that an unbiased estimator exists for this problem. Thus, in order to 
develop valid error bounds on the true option price, we introduce two estima- 
tors, one biased high and one biased low, but both asymptotically unbiased as 
the computational effort increases. These estimators are based on simulated trees. 
The simulated trees are parameterized by 6, the number of branches per node. 
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Fig. 2. Simulated tree for b = 3 

State variables are simulated at the finite number of possible decision points, 
i.e., exercise times. For purposes of exposition, we introduce the estimators in- 
formally and in a limited context. In the next section, we give a precise general 
formulation. 

An illustration of a tree for b = 3 is given in Fig. 2. The connections between 

nodes indicates the dependence structure of the stock prices. For example, both 
Si’ and S;* depend on Si but neither depends on Sf. It is important to keep in 
mind that in Fig. 2 the nodes at a fixed time appear according to the order in 
which they are generated, not according to their node values, as would be the 
case in a lattice method. For example, the node labeled St need not correspond 
to a higher asset value than the node labeled Sf. Indeed, since a node label may, 
in general, record multiple state variables, there may be no natural ordering of 
the node values. Thus, Fig. 2 applies as well in the case of a multifactor model 
as a single-factor model. 

2.1. The high estimator 0 

Let C denote the price of an American call option with d -I- 1 exercise oppor- 
. . 

tunities at times tip 2 = 0,. . . , d. We denote our first estimator by 0. It is defined 
as the call value estimate obtained by a dynamic programming (DP) algorithm 
applied to the simulated tree. At the terminal date, the option value is known. 
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I > 

to=0 fl t2=T t 

Fig. 3. Stock price tree. 

1 w 
to=0 5 t2=T t 

Fig. 4. 0 (‘high’) estimate. 

At each prior date, the option value is defined to be the maximum of the im- 
mediate exercise value and the expectation of the succeeding discounted option 
values. Finally, 0 is the estimated option value at the initial node. A formal 
definition of 0 is given in the next section. A numerical illustration is given in 
Figs. 3 and 4. The parameters are SO = 101, K = 100, T = 1, and r = 0. For this 
particular tree, the American option price estimate is 0 = 11.9. 

The 0 estimator gives an estimate of the true option price which is biased 
upward, that is, E[O] 2 C. We refer to this estimator as the ‘high’ estima- 
tor. Some intuition for the bias is given next; the precise argument is given in 
Appendix A. Any simulated tree will not perfectly represent the distribution of stock 
prices. If at some node future stock prices are too high, the dynamic programming 
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algorithm may choose not to exercise and receive a value higher than the ‘opti- 
mal’ decision to exercise. Likewise, if future stock prices are too low, the dynamic 

programming algorithm may choose to exercise even when the ‘optimal’ decision 
is not to exercise. In each case, the DP algorithm takes advantage of knowledge 
of the future to overestimate the option value. 

Although biased, the high estimator is consistent, i.e., 0 converges to C as b 
increases. Precise statements about the type of convergence are given in the next 
section; proofs are given in Appendix A. The consistency of the 0 estimator 
distinguishes it from the estimator based on a single stock price path discussed 
earlier. 

2.2. The low estimator 9 

Next we propose an estimator that is biased low. The idea is to separate the 
branches at each node into two sets. The first set of branches is used to decide 
whether or not to exercise, and the second set is used to estimate the continuation 
value, if necessary. As we will see, this separation removes the upward bias in 
the estimator, but instead leads to an estimator with downward bias. 

This idea is illustrated in Fig. 5. The numerical values are based on the stock 

price tree in Fig. 3. At each node the second two branches are used to determine 
the exercise decision and the first branch is used to determine the continuation 
value, if necessary. For example, at the bottom node at time tl the decision 
is made by comparing the immediate exercise value (15) with the discounted 
expected value of not exercising (32.5 = 0.5 * 16 + 0.5 * 49). Hence, the decision 
is made to continue, but the value assigned to this action is 0 (based on the first 
branch which leads to a terminal stock price of 88). 

Why is this estimator biased low? To gain some intuition, consider the time just 
prior to expiration. The exercise decision is based here on unbiased information 
from the maturity date. If the correct decision is inferred from this information, 
the estimator would be unbiased. But with a finite sample, there is a positive 
probability of inferring a suboptimal decision. In this case, the value assigned 
to this node will be an unbiased estimate of the lower value associated with 
the incorrect decision. The expected node value is a weighted average of an 
unbiased estimate (based on the correct decision) and an estimate which is biased 
low (based on the incorrect decision). The net effect is an estimate which is 
biased low. 

Rather than using the simple low estimator just described, we propose a mod- 
ification. At each node, we use branch 1 to estimate the continuation value and 

the other b- 1 branches to estimate the exercise decision. This process is repeated 
b - 1 times, using branch 2 to estimate the continuation value, then branch 3, 
etc. The b values obtained are averaged to determine the option value estimate 
at the node. A formal definition of this estimator is given in the next section, 
but first a numerical example is given in Fig. 6. Consider the bottom node at 



1332 hf. Broodie. P. Glasserman I Journal of Economic D_vnamics and Control 21 (1997) 1323-1352 

1 P 

r(J=o G t2=T t 

Fig. 5. Simple low estimate. 

I w 
t, = 0 5 f*=T t 

Fig. 6. 0 (‘low’) estimate. 

time cr. As before, when branch 1 is used to determine the continuation value 

(and branches 2 and 3 are used to determine the decision ‘continue’), the es- 
timate is 0. When branch 2 is used to determine the continuation value (and 
branches 1 and 3 are used to determine the decision ‘continue’), the estimate is 
16. When branch 3 is used to determine the continuation value, branches 1 and 2 
are used to determine the decision ‘exercise’, so the estimate is 15. These values 
are averaged to give an estimate for the node of 10.3(=(0 + 16 + 15)/3). 

The resulting estimate at the initial node of the tree using this revised procedure 
is denoted 8. The 19 estimator is biased downward but is also consistent. That is, 
E[t?] < C and 0 converges to C. We refer to 0 as the ‘low’ estimator. 
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3. Analysis of the estimators 

Our objective in this section is to give a precise specification of our estima- 
tors, supplementing the description in Section 2, and to state their theoretical 
properties. Proofs are deferred to Appendices A and B. 

We use the following notation: 
l Time is indexed by t = 0, 1,. . . , T. This is a slight abuse of notation, for we 

really mean that t = to, tl, . . . , fd, with 0 = to < fi < . . . < td = T, where 2, is the 

time of the ith exercise opportunity. 

l {S,:t=O,l,...,T} is a (possibly vector-valued) risk-neutralized Markov chain 
recording all state variables. 

l eeR1 is the discount factor from t - 1 to t. We take R, to be a component of 

the vector S, and assume Rr 2 0 for all t. 
l h,(s) is the payoff from exercise at time t in state s. 
l fr(s) = hr(s), i.e., at expiration the option is worth the payoff from immediate 

exercise. 
l g,(s) = E[eeRf+’ fi+i(S,+i ) 1 St = s] is the continuation value at time t in state s. 

l sl(s) = max{Us),&)} is the option value at time t in state s. 
This framework is sufficiently general to encompass most pricing models which 

allow early exercise opportunities. The Markov assumption is not an essential re- 
striction since we allow multiple state variables. Indeed, some of the variables 
could incorporate information about the past (for example, whether or not a bar- 
rier has been crossed, or the maximum stock price to date), recorded to eliminate 
path dependence. The framework is general enough to allow for stochastic interest 
rates, stochastic volatilities, and similar features. 

A random tree with b branches per node is represented by the array 

{5’$‘.‘i~:t=0,1 ,..., T; ij=l ,..., b; j=l,..., t}. 

See Fig. 2 for an illustration. The joint distribution of the, elements of this array 

is specified as follows: SO is the fixed initial state; S:‘+‘i”r’, j = 1,. . . , b, are con- 

ditionally independent of each other and of all ,I$““” with u <t or ii # it, given 
~$1 “‘if, and given $1 “%, each $;;‘b has the distribution of [S, 1 St-1 =S:L,i’-‘]. 
Thus, each sequence 

so,s;y;“*, . . . ,s;““’ 

is a realization of the Markov chain {St : t = 0, 1,. . . , T}, and two such sequences 
evolve independently of each other once they differ in some il. To lighten nota- 
tion, we omit superscripts when doing so does not introduce ambiguity. 
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3.1. The high estimator 0 

The high estimator 0 is defined recursively by 

@iI ,..ir _ 
T 

- fT(q!““T) 

and 

@,...i, = max h,(S;,...i,), i f: e-R~;;‘it’($l;;i,i 

i 

\ 
I 

j=l ! 

(2) 

‘> (3) 

for t = 0,. . . , T - 1. At each node, this estimator chooses the maximum of the 
early exercise payoff and the continuation value estimated from all successor 
nodes. (Here and throughout, a quantity subscripted by t = 0 is understood to 
have no superscript; thus, Ofl”‘il becomes simply 00 at I = 0.) This estimator 
depends on the branching parameter and we sometimes include b as an explicit 
argument. Let aa denote the sample mean of n independent replications of 00. 
Define the p-norm of the random variable X by (E(X]J’)“P. 

Theorem I (High-estimator consistency). Suppose E[(h,(S,)lp’] <co fir all t, for 
some p’ > 1. Then &(b) conuerges to fo(So) in p-norm, for any 0 < p < p’, as 
b + 00 with n arbitrary (n may or may not increase to infinity). In particular, 
Go(b) converges to fo(So) in probability and is thus a consistent estimator of 
the option value. 

A consequence of this result is that 

E[@o(b>l + _h(so) 

as b -+ 00, so the estimator is asymptotically unbiased. For finite b, it is useful 
to know that the bias is always positive: 

Theorem 2 (High-estimator bias). The high estimator is indeed biased high, i.e., 

E[@o(b)l 2 _Wo> 

for all b. 

3.2. The low estimator 8 

The low estimator 8 is defined recursively as follows. First let 

(4) 
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Next define 

b 

~,($I”“’ ) if ~,(s::I’.“,) 1 1 C e-R::, ‘“‘~;l;~‘,i, 

b-l 
i=l 

i,..Q,j i#j 

?t = 

e-R/+, ,+.,%j 1 b 

t+1 
if h,($l”‘if)< - 

b-l c 

e_R,‘:;“‘v $I;;.i,i 

!=I 
i#j 

for j = 1,. . . , b. Then let 

1 b oil . ..i. _ _ 
c 

i,.,.i,j 
t - b Vt 7 

j=l 

(5) 

(6) 

for t=O,...,T- 1. 
This estimator is also consistent. 

Theorem 3 (Low-estimator consistency). Suppose P(h,(S,) # gl(S,)) = 1 for all t. 
Then Theorem 1 holds for the low estimator as well. 

The additional condition imposed here, ensuring that the optimal exercise policy 
is almost surely never indifferent between continuation and immediate exercise, 
greatly simplifies the analysis of the estimator and seems harmless in practice. 

As in the case of the high estimator, Theorem 3 implies that 80(b) is asymptot- 
ically unbiased. It is convenient that for finite b the biases of the two estimators 
have opposite signs, as the following result ensures: 

Theorem 4 (Low-estimator bias). The bias of the low estimator is negative, i.e., 

Wo(b)l I fo(S0) 

for all b. 

It is easy to define generalizations of the low estimator. For example, at each 
node, use bl branches to determine the exercise decision and b2 branches to 
evaluate the resulting payoff, with bl + b2 = b and both bi -+ o(, as b --+ 03. These 
alternative estimators are consistent and biased low. 

3.3. Comparison of the estimators 

Our last result on the estimators orders their values: 

Theorem 5. On every realization of the array {Si”“” : t = 0, 1,. . . , T; ij = 
l,..., b; j= l,..., t}, the low estimator is less than or equal to the high 
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estimator. In short, 

@I.,.;, < @,...i, 
f I 

with probability one, for all il,. . . , it and all t = &I,. . . , T. 

4. Numerical results 

In this section we provide some numerical results to illustrate the simulation 
method. Implementation details are given in Appendix C. We begin by pricing 
a standard American call option on a single asset which pays continuous div- 
idends and whose price is governed by a geometric Brownian motion process. 
In particular, we assume that the risk neutralized price of the underlying asset, 

S,, satisfies the stochastic differential equation 

dS, = &[(r - 6) dt + o dz,], (7) 

where z, is a standard Brownian motion process. In Eq. (7), r is the riskless 
interest rate, 6 is the dividend rate, and a>0 is the volatility parameter. Under 
the risk neutral measure, ln(S;/Si_l) is normally distributed with mean (r - 6 - 
a2/2)(li - ti_ 1) and variance a2(ti - ti- 1). Given Si- 1, Si can be simulated using 

s. = Si_, e(r-6-02/2)(r,--1,-I)+b~z 
1 9 

where Z is a standard normal random variable. 5 The parameters were chosen 

so the early exercise opportunity would have significant value. 6 The results are 
given in Tables 1 and 2. 

In the tables, the confidence intervals are given by 

[max{(& - K)+, 8 - Z~/2WlJ;;h @ + zor/24@Ym (9) 

where za/2 is the 1 - a/2 quantile of the standard normal distribution, and s(6) 
and s(O) are the sample standard deviations of 8 and 0, respectively. We take 
the upper confidence limit from the high estimator. The lower confidence limit 
is taken from the low estimator, except that the lower limit is truncated at the 

5 If dividends are discrete, one approach is to replace Eq. (8) by 

Si = ‘J_, e(‘--02/2xfi--rf- I )++zz - Di, 

where Di is the dividend paid at time ri. 

6 McDonald and Schroder (1990) show that in this setting the value of an American call option is 

equal to the value of an American put with the following change of parameters: S, -+ K, K -+ S,, 
r+ 6, and 6 -+ r. So the call option results in Tables I and 2 can also be viewed as put option 

results with r = 10% and 6 = 5%. 
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Table I 
American call option on a single asset 

Low est 

s B 

70 0.115 

80 0.649 

90 2.25 I 

100 5.628 

II0 10.988 

120 19.743 

130 29.763 

Std err High est Std err 

of 0 0 of 0 

0.004 0.117 0.004 [ 0.108, 0.1241 0.116 

0.016 0.662 0.016 [ 0.624, 0.6881 0.656 

0.039 2.316 0.040 [ 2.187, 2.3821 2.283 

0.076 5.824 0.078 [ 5.502, 5.9521 5.726 

0.156 11.603 0.113 [ 10.732, I I.7891 I 1.296 

0.139 20.329 0.069 [20.000, 20.4421 20.164 

0.124 30.154 0.049 [30.000, 30.2351 30.077 

90% confidence 

bounds 

Point 

est 

True 

value 

Rel 

error 

0.121 4.36% 

0.670 2.15% 

2.303 0.87% 

5.731 0.09% 

Il.341 0.40% 

20.000 0.82% 

30.000 0.26% 

Option parameters: K = 100, r = 0.05, 6 = 0.10, T = I .O, 0 = 0.2, and four exercise opportunities at 
times O,T/3,2T/3, and T. The ‘true value’ corresponds to the same four exercise opportunities. 
Simulation parameters: n = 100, b = 50. 

Table 2 

American call option on a single asset - with control variate 

Low est Std err High est Std err 90% Confidence Point True Rel 

s 8 of e 0 of 0 bounds est value error 

70 0.121 0.000 0.122 0.000 [ 0.120, 0.1221 0.121 0.121 0.08% 

80 0.663 0.001 0.676 0.001 [ 0.662, 0.6771 0.670 0.670 0.07% 

90 2.268 0.005 2.334 0.002 [ 2.260, 2.3371 2.301 2.303 0.11% 

100 5.631 0.013 5.828 0.007 [ 5.611, 5.8401 5.730 5.731 0.02% 

110 10.957 0.085 11.576 0.017 [10.816, 11.605] 11.266 11.341 0.66% 

120 19.742 0.139 20.306 0.043 [20.000, 20.3761 20.153 20.000 0.76% 

130 29.773 0.122 30.138 0.038 [30.000, 30.2001 30.069 30.000 0.23% 

Option parameters: K = 100, r = 0.05, 6 = 0.10, T = I .O, e = 0.2, and four exercise opportunities at 
times 0, T/3,2T/3, and T. The ‘true value’ corresponds to the same four exercise opportunities. 
Simulation parameters: n = 100, b = 50. The European option value is used as a control. 

immediate exercise value of the option, which is a trivial lower bound on the 

true value. The point estimate is given by the simple average 

0.5 max{(& - K)+, (3) + 0.50. 

With a finite number of exercise opportunities, the true value of the call option 
can be obtained from the formula in Geske and Johnson (1984). The numbers 
in the ‘Rel error’ column are defined by 

C-C I I c ’ 
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where C is the true option value and I& is the simulation point estimate. (The 

reported relative errors are based on more significant digits than are shown in 
the tables.) 

The results in Table 1 are consistent with the theoretical developments in the 
previous section. Indeed, the 6 estimator is biased low, the 0 estimator is biased 

high, and 8 5 0. For these parameters, the relative error ranges from 0.09% to 

4.36%. Each row in Table 1 can be computed in about 1 min on a PC with 
a 133 MHz Pentium processor. The results in Table 2 are obtained using the 
control variate technique. See, e.g., Section 11.4 of Law and Kelton (1991) for 

a discussion of this technique. The European option value is used as the control 
variate in Table 2. Table 2 shows significant reductions in the standard errors of 
the estimates compared to the corresponding entries in Table 1, except for deep 
in-the-money options. 7 In all cases the relative error is less than 1% with the 

control variate technique. 
Because of the bias of the estimators and the definition in (9), the reported 

confidence intervals are conservative. That is, the true value will fall in the con- 

fidence interval more times, on average, than suggested by the confidence level. 
For example, for the option in Table 1 with S =K = 100 we ran 1000 simu- 
lation trials with different random number seeds. We then computed confidence 
intervals with z,/z = 0.5, corresponding to a 38% confidence level, and found that 
over 90% of the intervals contained the true value. Similarly, with z,/2 = 1.0, 
corresponding to a 68% confidence level, 96% of the intervals contained the true 
value. With ZQ = 1.645, corresponding to a 90% confidence level, 99% of the 
intervals contained the true value. Results for other securities will depend on 
the model and simulation parameters, which influence the bias in the estimators. 
The reported confidence intervals will be more conservative when the biases are 
larger. 

4. I. Higher-dimensional results 

Next we price American call options on the maximum of k assets. The payoff 
upon exercise of this option is (maxi,i,,..,k S’ - K)+. Under the risk neutral mea- 

sure asset prices are assumed to follow correlated geometric Brownian motion 
processes, i.e., 

d$ = S:[(r - Si) dt + Oi dzi], 

where zi is a standard Brownian motion process and the instantaneous correlation 
of zi and zj is pij. For simplicity, in our numerical results we take 6i = 6 and 
pij = p for all i, j = 1,. . . , k and i # j. 

‘A control variate is most effective when it is highly correlated with the quantity being estimated. 

The European option and American option payoffs are less correlated when the option is deep in- 

the-money. 
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Table 3 

American max-option on two assets 

s 
Low est Std err High est Std err 90% confidence Point True Rel 
0 of a 0 of 0 bounds est value error 

70 0.247 0.008 0.250 0.008 [ 0.234, 0.2631 0.249 

80 1.225 0.02 1 1.246 0.02 I [ 1.191, I.2811 1.235 
90 4.019 0.049 4.116 0.05 1 [ 3.938, 4.2001 4.067 

100 9.228 0.093 9.481 0.095 [ 9.075, 9.6441 9.358 
110 16.715 0.132 17.241 0.134 [16.558, 17.4611 17.008 
120 25.741 0.141 26.369 0.140 [25.515, 26.5991 26.058 
130 35.541 0.194 36.254 0.200 [35.221, 36.5831 35.898 

0.237 4.90% 

1.259 - 1.85% 

4.077 -0.24% 

9.36 1 -0.03% 

16.924 0.50% 

25.980 0.30% 

35.763 0.38% 

Option parameters: S’ = S2 = S as indicated in the table. Also K = 100, r = 0.05, 6 = 0.10, T = 1 .O, 
a=0.2, p=O.3, and four exercise opportunities at times 0, T/3,2T/3, and T. The ‘true value’ corre- 
sponds to the same four exercise opportunities. Simulation parameters: n = 100, b = 50. 

Tables 3 and 4 give results for two assets and Tables 5 and 6 give results 
for five assets. For the two asset case, the true value of the option can be ap- 
proximated using, for example, the multivariate algorithm of Boyle et al. (1989) 
or Kamrad and Ritchken (1991). * The European max-option is used as a con- 
trol variate in Table 4. 9 The European max-option value is used as the control 

variate in Table 4. The confidence intervals are considerably narrower with the 
control and all relative errors are less than one percent in Table 4. Each row of 
Table 3 and 4 can be computed in about two minutes on a PC with a 133 MHz 
Pentium processor. 

Results for five assets are reported in Tables 5 and 6. Relative errors are not 
reported because the true value is unknown. A multinomial lattice with k assets 
and n time steps has on the order of nk terminal nodes. With k = 5 the compu- 
tations are prohibitive for n as small as 50. And even if the computations could 
be done, the resulting value would not be very accurate. lo However, as shown 
in Tables 5 and 6, the simulation method is able to produce valid confidence 
intervals in a reasonable amount of computing time. As before, the confidence 
interval widths are considerably narrowed with the use of the control variate. The 
confidence interval halfwidths are within 1% of the midpoint of the interval. 

*In Tables 3 and 4 we approximated the true value using the algorithm of Kamrad and Ritchken 

(1991). Let x denote the lattice value with 600 time steps and y the value with 1200 time steps. 

Our final estimate, z, is based on these two values and two-point Richardson extrapolation, i.e., 

z = 2y - x. Additional comparisons with the known European max-option value indicated that this 

procedure resulted in an error of about 0.00 1. 

’ A formula for this option is given in Johnson (1987). For the k-asset case, cumulative /r-variate 

normal probabilities need to be evaluated. We used the algorithm in Schervish (1984, 1985) for these 

computations. 

lo Our computational experiments using lattice methods with k = 3 and n = 50 indicate errors on the 
order of 0.10. 
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Table 4 

American max-option on two assets - with control variate 

s 
Low est 

0 

Std err 

of 8 

High est 

0 

Std err 

of 0 

90% confidence 

bounds 

70 0.235 0.000 0.238 0.000 [ 0.235, 0.2391 

80 1.250 0.001 1.271 0.001 [ 1.248, 1.2731 

90 4.035 0.005 4.133 0.004 [ 4.027, 4.1391 

100 9.245 0.011 9.505 0.008 [ 9.227, 9.5181 

110 16.718 0.020 17.183 0.015 [ 16.685, 17.2071 

120 25.682 0.026 26.304 0.019 r25.639, 26.3361 

130 35.452 0.03 1 36.162 0.021 [35.400, 36.1971 

Point True 

est value 

0.237 0.237 

1.261 1.259 

4.084 4.077 

9.375 9.361 

16.951 16.924 

25.993 25.980 

35.807 35.763 

Rel 

error 

-0.03% 

0.15% 

0.16% 

0.16% 

0.16% 

0.05% 

0.12% 

Option parameters: S’ = S2 = S as indicated in the table. Also K = 100, r = 0.05, 6 = 0.10, T = 1 .O, 
D = 0.2, p = 0.3, and four exercise opportunities at times 0, T/3,2T/3, and T. The ‘true value’ corre- 
sponds to the same four exercise opportunities. Simulation parameters: n = 100, b = 50. The European 
max-option value is used as a control. 

Table 5 

American max-option on five assets 

S 

70 

80 

90 

100 

110 

120 

130 

Low est Std err High est Std err 90% confidence Point 

e of e 0 of 0 bounds est 

0.556 0.012 0.561 0.012 [ 0.536, 0.5811 0.558 

2.641 0.038 2.681 0.039 [ 2.578, 2.7461 2.661 

7.799 0.076 7.941 0.078 [ 7.674, 8.0691 7.870 

15.832 0.120 16.118 0.122 rl5.634, 16.3191 15.975 

25.607 0.151 26.022 0.154 [25.359, 26.2761 25.815 

36.379 0.157 36.847 0.158 [36.121, 37.1071 36.613 

47.053 0.163 47.618 0.164 [46.785, 47.8881 47.335 

Option parameters: S’ =S, i = 1,. ,5 as indicated in the table. Also K = 100, r-=0.05, 6 = 0.10, 
T = 1 .O, o = 0.2, p = 0.3, and four exercise opportunities at times 0, T/3,2T/3, and T. Simulation 
parameters: n = 100, b = 50. 

The importance of variance reduction is clearly demonstrated in these re- 

sults. Broadie and Glasserman (1995) investigate other enhancements of the basic 
method described in this paper. In particular, they investigate pruning techniques 
to reduce the number of nodes in the tree. For example, if a European value is 
easily computed, then that value can be used at the penultimate time step. At an 
intermediate stage in the tree, branching can be eliminated if the optimal deci- 
sion is known or easily computed (for example, if an option is out-of-the-money 
then exercise is suboptimal). They also investigate bootstrapping to estimate and 
reduce the bias in the low and high estimators. Numerical results indicate sub- 
stantial benefits from the pruning techniques. Although bootstrapping succeeds in 
reducing bias, the increased computational effort largely offsets the gain from the 
improved estimates. 
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Table 6 

American max-option on five assets - with control variate 

Low est Std err High est Std err 90% confidence Point 

s 0 of 0 0 of 0 bounds est 

70 0.552 0.000 0.557 0.000 [ 0.551, 0.5571 0.554 

80 2.690 0.002 2.731 0.001 [ 2.687, 2.7331 2.71 1 

90 7.752 0.005 7.893 0.004 [ 7.744, 7.8991 7.823 

100 15.761 0.010 16.046 0.007 [ 15.745, 16.0581 15.904 

110 25.600 0.013 26.015 0.009 [25.579, 26.0301 25.808 

120 36.261 0.017 36.734 0.012 [36.238, 36.7531 36.500 

130 47.122 0.019 47.689 0.013 [47.091, 47.7101 47.405 

Option parameters: S’ = S, i = 1,. ,5 as indicated in the table. Also K = 100, r = 0.05, 6 = 0.10, 
T = 1.0, o = 0.2, p = 0.3, and four exercise opportunities at times 0, T/3,2T/3, and T. Simulation 
parameters: n = 100, b = 50. The European max-option value is used as a control. 

Additional variance reduction techniques are investigated in Broadie, 
Glasserman, and Jain (1996). In particular, they find that Latin hypercube sam- 
pling works particularly well in this setting. For example, in Table 6 the 90% 
confidence interval in the row S = 100 is [15.745, 16.0581. Using Latin hyper- 

cube sampling in addition to the control variate gives a 90% confidence interval 
of [15.865, 15.9071. The halfwidth of the interval is 0.13% of the midpoint of 
the interval. 

4.2. Discrete versus continuous exercise 

Because of the discrete nature of the simulation method our numerical results 
are limited to a finite number of exercise opportunities. In addition, the computa- 
tional cost of our method is exponential in the number of exercise opportunities. 
With current technology, this limits the number of exercise opportunities that 
we can consider. ” In practice, there are many securities with a limited number 

of exercise opportunities. For example, in the case of a call option on a stock 
which pays discrete dividends, it is well known that exercise is only optimal just 
prior to ex-dividend dates. For stock options whose maturity is 1 yr or less, this 
means that there will typically be at most four opportunities for optimal early ex- 
ercise. Another example is over-the-counter options which often have ‘structured 
exercise opportunities’, i.e., where exercise is allowed only at a finite number of 
prespecified dates. As a final example, Jamshidian (1996, p. 20) writes ‘In the 
Libor and swap markets there are hardly any options with continuous exercise.’ 

In many cases, however, the security under consideration allows for continuous 
exercise. To estimate this value under our method, we need to use an extrapola- 
tion procedure. Geske and Johnson (1984) were the first to investigate Richardson 

” Conveniently, the method is very well suited to parallel computing. 
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extrapolation in a finance context. Let C(d) denote the price of an option with 
d + 1 exercise opportunities at times to,. . , td and let C denote the price with 
continuous exercise. For small d, C(d) may be a poor estimate of C. However, 
an extrapolated estimate of the form Cf=, a;C(i) may provide an excellent es- 
timate of C. Richardson exptrapolation offers a particular recipe for choosing 
(in advance) the coefficients ai. Richardson exptrapolation can also be used to 
extrapolate to an arbitrary, finite number of exercise opportunities. 

Broadie et al. (1996) investigate this technique and find that it substantially 
improves the estimate of the continuous exercise price. For example, consider the 
case of two assets with S’ = S* = 100. The true value with continuous exercise 
is C = 9.637 (which is greater than the value of 9.361 with only four exercise 
opportunities). The European value is C(l)= 8.932. Simulation estimates give 
C(2) = 9.248 and C(3) = 9.357. The relative error of the C(3) estimate is -2.9%. 
The estimate obtained by extrapolating C( I), C(2), and C(3) is 9.58 1 which has 
a relative error of 0.6%. Further, similar results are reported in Broadie et al. 
(1996). 

5. Conclusions 

In this paper we have shown that there is essentially no unbiased simulation 
estimator of the value of early exercise. To circumvent this difficulty, we devel- 
oped a method which generates two estimates, one biased high and one biased 
low. Both estimates are asymptotically unbiased and converge to the true price. 
They can be combined to give a valid confidence interval on the true price. Be- 
cause of estimator bias, the confidence intervals obtained are conservative: actual 
coverage tends to exceed the nominal stated coverage. 

The method is most promising for pricing American-style securities with mul- 
tiple state variables. Although our estimators were developed for options with 
two decisions, exercise or not, they are easily extended to a finite number of 
decisions. For example, the management of a firm may have the opportunity to 
choose between initiating a project, expanding or contracting to one of several 
levels, or abandoning a project. Hence, this method could be particularly useful 
for the valuation of complex real options. 

Preliminary computational evidence given in the paper is quite encouraging. 
For a five asset problem, relative errors of less than one percent are obtained with 
modest computational effort. Our proposed algorithm can be naturally parallelized 
in several ways and this could lead to large improvements in computation time 
on parallel machines, e.g., on a network of workstations. 

This work can be extended in several directions. Variations of the low estima- 
tor, e.g., using bi branches to determine the exercise decision and b2 branches 
to evaluate the resulting payoff, remain to be explored. The number of branches 
per node does not need to be constant throughout the tree. The convergence rate 
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of the algorithm and the effect of the choice of n and h on the error remain 

to be explored. Alternative variance reduction techniques, including other control 

variates, could be tested. Quasi-Monte Carlo methods, also termed low discrep- 

ancy methods, are another promising avenue of exploration (see Birge, 1994; Joy 
et al., 1996; Owen, 1994, 1995; Paskov and Traub, 1995). Additional computa- 
tional testing on other American-style securities remains to be done. 

Appendix A 

In this appendix, we prove Theorems 1-5. First, we introduce some additional 
notation. With X a random variable, we write ]lX]] for the p-norm (ElXlp)l’p of 
X, the value of p depending on the context. The notation ]]Xl]s, indicates the con- 
ditional norm (E[]X]P]S,]) . ‘fp This coincides with the unconditional norm when 

t = 0, because SO is deterministic. A quantity like 0, appearing without a super- 
script indicates a generic copy of Oi’““‘, and O:i, similarly indicates a generic 

copy of @;L;‘i’i. A statement like ‘@ii,, j = 1,. . . , b, are conditionally independent 

given S,’ is short for ‘O;:;““, j = 1,. . . , b, are conditionally independent given 

S”‘+, for all il,. . . , it’. t 
We need the following preliminary result: 

Lemma A.I. rf Ilht(St)ll <co for all t, for some p > 1, then the following are 

also jinite for all 0 < tl _< t2 < T: 

0) IlhG, >Ik,, ; 
(ii) sUPb Il%@Ns,, ; 
(iii) SUPb Ilh<b)lls,, . 

Proof If every h,(S,) has finite pth moment, then each llht,(S,,)Il~,, is finite and 

so are Il.M% III s,, and IlstAWIls,, b ecause the max, discounting, and conditional 

expectation operations preserve finiteness of moments. For IIO,,(b)lls,, , fix tl and 
proceed backwards by induction on t2 from T to tl. At t2 = T, (ii) follows from 
(i). At t2 CT, we have 

s:P II%(b>lls,, 5 Ilht2(St2 Ills,, + s;p i & e-RA+lt3h+l(b) 
j=l 

Sr, 

2 IlMWIls,, + sp Il%+d~)lls,, 9 

which is then also finite. The argument for (iii) is essentially the same. I2 

Proof of Theorem I. Take n = 1. We will prove that convergence holds for 
each t (not just t =O), proceeding backwards by induction. We claim that if 
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ll@t+1(b) - f(S+1 )Ils,+, ---) 0, then Il@db) - ft&)lls, +O. Since Or z f(Sr), the 
theorem will be proved once we verify this claim. 

We have 

= /I { max h,(S,), k f: eeR:+l O;+,(b)) - max{ht(&), gl(St)} 
i=l il S, 

II 

b 

L ice -R;+, @f+,(b) - g,(&) 

i=l II 

5 ~~e-R~+l~~~+,(~)-,+,(~+,)}ll 

I/ i=l .S 

= B1 + B2, - say. 

Given S,, the ewR:+l f(,!$+,), i = 1,. . . , b, are i.i.d. with mean g(S,) and finite 
p-norm. By Theorem 1.4.1 of Gut (1988), we thus have B2 -+ 0. For B1 we have 

BI I II@,+,(b) - fi+~(&+~)lls,. 

The induction hypothesis implies that 

II@r+ltb) - ~+I(~I+I%,+, --+a 

By a standard condition for uniform integrability (see Gut, 1988, p. 178), we 
also have 

Il@,+t(b) - fr+~(sr+~)lls, +O (A.1) 

if 

s~pEW’~+db) - fr+d&+dlP+El&l < 00 

for some E > 0. From Lemma A. 1, we know that in fact both 

supE[l~,+,(b)lp+El~,I and E[Ist+~(&+l )IP+EI&l 
b 

64.2) 

are finite, so (A.2) holds and therefore (A.l) holds. 
The same argument applies for the average of n independent replications of 

@o(b), no matter how n changes with b. 0 
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Proof of Theorem 2. We prove more generally that E[O#,] L f,(&) for t = 0, 
T. The proof proceeds by backwards induction. By definition, Or = fr(Sr) to” t;ivially E[OrJSr] > fr(Sr). 0 ur induction hypothesis is E[ O,+t IS,+t ] 2 

fi,_t(S,+r ). By Jensen’s inequality and the definition of O,, we have 

E[@&$I 2 max{h,(S,),EEe-R~+‘O,+~ ISI) 

= max{h,(S,),E[e-RI+‘E[O,+, ISt+~llStl) 

2 max{ht(s,),E[e-R’+‘f,+l(SI+, )IStl) 

= max{MSt),glG)) = f&‘$). 0 

Proof of Theorem 3. The proof is similar to that of Theorem 1 and proceeds 

backwards by induction on t. 
Convergence is automatic at t = T. Suppose now that l]&+t(b) - f(Sf+t)]]s,+, 

+ 0. Define 

(A.3) 
,=I 
i#i 

and recall that gr(S,) # h,(S,), with probability one. We claim the following hold: 

(a) 11(1/b) Xf=, e-R/+lej,,(b) - g(S,)Ils, -+ 0; 

(b) IIY/(V - dSt)lls, -+ 0. 
(cl lll{h,(S,) 2 Y,‘(b)} - l{ht(&) > s,(Sr)) Ils -+ 0. 
The proof of (a) is just the same as the proof of a corresponding step in the 

proof of Theorem 1. The same argument applies to (b), because the estimators 
in (a) and (b) differ only in the omission of one term in Y/(b). For (c), suppose 

that h,(S,) < gl(S,). Then 

]]$4SA L r,‘(b)) - ‘{h,(s,) > S&s,)) ]ls, = ]]‘{h,(S,) 2 Y,‘(b)} Ih 

= P( Y:‘(b) < ht(Sf)lSf)“P -+ 0, 

because (b) holds and convergence in p-norm implies convergence in probability. 

The same argument applies if h,(S,) > gt(S,). 
We now claim that from (a) and (c) it follows that 

I/ 

$ f: e-R~+‘e:,,(h)l(h,ts, < r,‘(b)} - gt(s~)l{~,(&) < S&%)} + ‘7 (A.41 

j=l 
s, 
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but we postpone a proof of this claim until the end. An immediate consequence 

of (c) is that 

Ilh~(S~)l{h,(S,) 2 Y,‘(b)} - WW{h,(S,) > Y,(S,)~IlS, +a (A.5) 

Now observe that 

II@(b) - f(~~)Il.s, 

1 b 
= - 

b c (h~(S~)l{h,(S,, 2 Y,‘(b)} 
j=l 

fe -R:+l O;i+, (b)l {h,(S,) < Y,‘(b)} ) - ft(sf) 

St 

+llh@d{h,(S,) 1 Y,‘(b)} - uw{h,(s,) > go,)} IIS -r 0 

by (A.4) and (A.5). 
It remains to prove (A.4). Using a self-explanatory simplification of the nota- 

tion, what we need to show becomes 

1 b 

b c Uj(b)Vj(b) - uu t 0. 
j=l 

Now, 

i e uj(b)Uj(b) - UZI 2 
j=l 

i e [Uj(b)Vj(b) - Uj(b)U] 
j=l 

F Ilw@)ll . Ibl(b) - 4 + Ml . 

But IIul(b) - 4l--$O by Cc), and Jl(l/b)& uj(b) - uJJ -0 by (a). 0 
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Proof‘ of Theorem 4. We use backwards induction. By definition, 8r = j”r(Sr) 

so trivially E[&lSr] < fr(S~). Our induction hypothesis is EIBI+i IS,+l] 5 h-1 

(St+1 ). 
Let Yj be as in (A.3). From the definition of 8,, notice that E[B, IS,] = E[q/ IS,] 

for any j = 1,. . , b. Since Y: is conditionally independent of t?:+, given S,, we 

have 

EL?: Ptl = JWGSY {/I,(&)> *,:,)ls’l + E[e-R++,l{h,(S,) < Y,i,} ISJ 

= h(S,Wt(S,) 2 Y;i,,lW + E[e-RI:18;‘,,IS,IP(h,(S,) < Y;i,,ISt> 

= h,(S,)p + E[e-R:+lOj+, (S,]( 1 - p) say. 

But then 

E[hlS,l = h(St)p + wR:+we,i,, I&+lllwl - P) 

I M&)p + E[e-R~+lf(s,+~>ls~l(l - P> 

= h,(St)p + s@,)(l - P> 

5 max{MSt),gtG)) = .fG). 0 

Proof of Theorem 5. The proof is by backwards induction. The induction starts 
since l3r = Or = f&t+). The induction hypothesis is ei+, 5 O;‘+t, j = 1,. . . , b. 

Let Y/ be as in (A.3). If Yi, . . . , Y/ are all less than or equal to h,(S,), then 

q{=h,($), j=l,..., b, so 8, = h,(S,) 5 0,. Suppose, now, that at least one Y: 

is greater than h,(S,). Then 

(A.6) 
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Without loss of generality, suppose that Yt’, . . , Y: are greater than h,(S,) and 
yk+l 
f , . . ., Yp are less than or equal to h,(S,). Then the ratio appearing in (A.6) 

equals k-’ x;=, eeR:+l ej+t . For any i 5 k < j 5 b, we have Y: > Y/ which im- 

plies ewR:+l @+, < epR:+l El/+ 1. Thus, 

max{edR:+l L$+t, . . . , e-R:+l e,:,) 5 min{eMR:+:’ e;$ . . . , evR:=l’ e;,:’ }. 

But then 

1 k 

k e c 
-4+1@ 

1 b 
If1 <-jj c e -R:+, 0’ [+I’ 

i=l i=l 

From (A.6), we now get 

1 b 

b 
C q/ 5 ph,(S,) + (1 - p): & e-R~+lfI~+, 
j=l i=l 

Appendix B 

In this appendix we argue that, under some restrictions, there can be no general 
unbiased estimator of the price of American options. The key step is to reduce 
the problem to the unbiased estimation of 

a b max{a, E[X]} 

for an arbitrary constant u, with the distribution of X varying over a sufficiently 
rich class X. To be concrete, we take X’ to include all constants and at least one 
random variable Y for which P(Y c a) and P( Y > a) are both strictly positive. 
Notice that 01 is the value of the option to choose between a sure payment of a 
or a risky payment of X. Any reasonably general method for producing unbiased 
estimates of American option prices should be able to generate unbiased estimates 
of a for all X E H. 
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We first show that there is no function g : R + R such that E[g(X)] = max{a, 

E[X]} for all X E 2. For this equation to hold for all constant X we must 

have g(x) = max{a,x}. But then E[g(Y)] = E[max{a, Y}] > max{a, E[Y]}, by the 
conditions imposed on Y. 

Now suppose that there is a function g : R” --+ R for n > 1 such that E[g(&, 
X2,...,&)]= max{a,E[X]} f or all X E 2, where the Xi are i.i.d. with the distri- 

bution X. For this case, we impose the additional requirement that g 2 a, so that 
the estimated value is never less than the obvious lower bound a. We assume 
that &? includes at least one random variable Y with E[Y] -=z a, one random vari- 
able Z with E[Z] > a, and both having densities with the same support. Now to 

have E[g(Yi,..., Y,)] = a, we must have g = a on the support of Y. But then 
E[g(Zi, . . , Z,,)] = a, a contradiction. I2 

Appendix C 

In this appendix we provide detailed information for the implementation of 
the method. Some care must be take because of the potentially large number 
of terminal nodes in a tree. Using a depth-first procedure, the storage require- 

ments for the algorithm are minimal. In particular, the memory required is only 
O(bd). 

The pseudo-code in Fig. 7 indicates a procedure for processing a single tree 

and computing a tree estimate using a depth-first procedure. By tree estimate, 
we mean the high estimate 0, the low estimate 8, or the estimate of a control 
variate. The final tree estimate is the average of tree estimates over n independent 
replications of trees. 

In the pseudo-code, ‘node value’ refers to the computation of 0, 8, or the 
control at a given node in the tree. For example, for 0, the ‘node value’ is 
computed using Eq. (2) at a terminal node (i.e., case 1 or case 2 with j = d in 
Fig. 7) or Eq. (3) at an intermediate node (i.e., case 3 or case 4 with j-cd in 
Fig. 7). For 19, the ‘node value’ is computed using Eq. (4) at a terminal node 
or Eq. (6) at an intermediate node. For a control value, the ‘node value’ is the 
usual present value operator. 

In the pseudo-code, ‘state variable’ refers to the computation of the state vari- 
able S:‘l .““. For example, in the case of an option on a single asset whose price 
follows a lognotmal distribution, the ‘state variable’ is computed using Eq. (8). 
Other details of the simulation depend on the particular pricing problem and are 
left unspecified in the pseudo-code. 

I2 We thank Chris Rogers for suggesting this argument. 
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/* allocate storage */ 

integer vector w(j), for j = 1 to d by 1; 

reaImatrIx~(i,j),fori=ltobby1,j=1todby1; 

/* lnltlahze parameters ‘/ 

v(l,l) = s; w(1) = 1; 

for j=Ztodbyl; 

v(1, j) = ‘state variable’; w(j) = 1; 

end for 

/* process tree l / 
j = d; 
while (j > 0); 

case 1: 

case 2: 

case 3: 

case4 

(j = d and w(j) < b) 

y(w(j), j) = ‘node value’; 

y(w(j) + 1, j) = ‘statevarlable’; w(j) = w(j) + 1: 

end case 1 

(j = d and w(j) = b) 

v(w(j), j) = ‘node value’; 

w(j) = 0; j = j - 1; 

endcase 

(j < d and w(j) < b) 
v(w(j), j) = ‘node value’; 

if (j > 1); 

v(w(j) + 1,j) = ‘statevariable’; w(j) = w(j) + 1; 

fori=j+ltodbyl; 

~(1, i) = ‘state variable’; w(i) = 1; 

end for 

j=d; 

elsej=O; endif 

end case 3 
0 < d and w(j) = b) 
v(w(j), j) = ‘node value’; 

w(j) = 0; j = j - 1; 

end case 4 

end while; 

/* return tree estimate l / 
‘tree estimate’ = ~(1, 1); 

Fig. 7. Simulation algorithm Pseudo-code. 
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